Exercise 17

Write a trial solution for the method of undetermined coefficients. Do not determine the coefficients.

$$
y^{\prime \prime}+2 y^{\prime}+10 y=x^{2} e^{-x} \cos 3 x
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}+2 y_{c}^{\prime}+10 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}+2\left(r e^{r x}\right)+10\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+2 r+10=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{-2 \pm \sqrt{4-4(1)(10)}}{2}=\frac{-2 \pm \sqrt{-36}}{2}=-1 \pm 3 i \\
r=\{-1-3 i,-1+3 i\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(-1-3 i) x}$ and $e^{(-1+3 i) x}$. By the principle of superposition, then,

$$
\begin{aligned}
y_{c}(x) & =C_{1} e^{(-1-3 i) x}+C_{2} e^{(-1+3 i) x} \\
& =C_{1} e^{-x} e^{-3 i x}+C_{2} e^{-x} e^{3 i x} \\
& =e^{-x}\left(C_{1} e^{-3 i x}+C_{2} e^{3 i x}\right) \\
& =e^{-x}\left[C_{1}(\cos 3 x-i \sin 3 x)+C_{2}(\cos 3 x+i \sin 3 x)\right] \\
& =e^{-x}\left[\left(C_{1}+C_{2}\right) \cos 3 x+\left(-i C_{1}+i C_{2}\right) \sin 3 x\right] \\
& =e^{-x}\left(C_{3} \cos 3 x+C_{4} \sin 3 x\right) .
\end{aligned}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
y_{p}^{\prime \prime}+2 y_{p}^{\prime}+10 y_{p}=x^{2} e^{-x} \cos 3 x
$$

Since the inhomogeneous term is the product of a polynomial and an exponential and a cosine, the particular solution would be

$$
y_{p}=\left(A x^{2}+B x+C\right) e^{-x}(D \cos 3 x+E \sin 3 x) .
$$

$e^{-x} \cos 3 x$ already satisfies the complementary solution, though, so an extra factor of x is needed.

$$
y_{p}=x\left(A x^{2}+B x+C\right) e^{-x}(D \cos 3 x+E \sin 3 x)
$$

